Conjugacy relation of Cantor minimal systems

F. García-Ramos Jagiellonian University \& UASLP

joint work in progress with Deka, Kunde, Kasprzak and Kwietniak - (Deka et al)

Conjugacy relation of Cantor minimal systems

F. García-Ramos Jagiellonian University \& UASLP

joint work in progress with Deka, Kunde, Kasprzak and Kwietniak - (Deka et al)

Basic definitions

- We say (X, T) is a topological dynamical system (TDS) if X is a compact metrizable space (with compatible metric d) and $T: X \rightarrow X$ is a homeomorphism.

Basic definitions

- We say (X, T) is a topological dynamical system (TDS) if X is a compact metrizable space (with compatible metric d) and $T: X \rightarrow X$ is a homeomorphism.
- Let $\operatorname{Homeo}(X)=\{T:(X, T)$ is a TDS $\}$ the space of all systems on X.

Basic definitions

- We say (X, T) is a topological dynamical system (TDS) if X is a compact metrizable space (with compatible metric d) and $T: X \rightarrow X$ is a homeomorphism.
- Let $\operatorname{Homeo}(X)=\{T:(X, T)$ is a TDS $\}$ the space of all systems on X.
- We equip $\operatorname{Homeo}(X)$ with the sup-metric, that is $d_{s}\left(T_{1}, T_{2}\right)=\sup \left\{d\left(T_{1} x, T_{2} x\right): x \in X\right\}$.

Basic definitions

- We say (X, T) is a topological dynamical system (TDS) if X is a compact metrizable space (with compatible metric d) and $T: X \rightarrow X$ is a homeomorphism.
- Let $\operatorname{Homeo}(X)=\{T:(X, T)$ is a TDS $\}$ the space of all systems on X.
- We equip $\operatorname{Homeo}(X)$ with the sup-metric, that is $d_{s}\left(T_{1}, T_{2}\right)=\sup \left\{d\left(T_{1} x, T_{2} x\right): x \in X\right\}$.
- This makes $\operatorname{Homeo}(X)$ a Polish space.

Topological conjugacy

- Two TDSs $\left(X_{1}, T_{1}\right)$ and $\left(X_{2}, T_{2}\right)$ are conjugated if there exists a homeomorphism $f: X_{1} \rightarrow X_{2}$ such that $f \circ T_{1}=T_{2} \circ f$.

Topological conjugacy

- Two TDSs $\left(X_{1}, T_{1}\right)$ and $\left(X_{2}, T_{2}\right)$ are conjugated if there exists a homeomorphism $f: X_{1} \rightarrow X_{2}$ such that $f \circ T_{1}=T_{2} \circ f$.
- In this case we write $\left(X_{1}, T_{1}\right) \approx\left(X_{2}, T_{2}\right)$.

Topological conjugacy

- Two TDSs $\left(X_{1}, T_{1}\right)$ and $\left(X_{2}, T_{2}\right)$ are conjugated if there exists a homeomorphism $f: X_{1} \rightarrow X_{2}$ such that $f \circ T_{1}=T_{2} \circ f$.
- In this case we write $\left(X_{1}, T_{1}\right) \approx\left(X_{2}, T_{2}\right)$.
- Let
$\mathcal{R}_{\approx}(X)=\left\{\left(T_{1}, T_{2}\right):\left(X, T_{1}\right) \approx\left(X, T_{2}\right)\right\} \subset$ Hoтeo $(X) \times$ Hoтeo (X)
the equivalence relation generated by conjugacy.

Cantor systems

- Let K be a Cantor space. A TDS (K, T) is called a Cantor system.

Cantor systems

- Let K be a Cantor space. A TDS (K, T) is called a Cantor system.
- Theorem (Camerlo-Gao '01) $\mathcal{R}_{\approx}(K)$ is Borel bi-reducible to the equivalence relation generated by isomorphisms of countable graphs.

Cantor systems

- Let K be a Cantor space. A TDS (K, T) is called a Cantor system.
- Theorem (Camerlo-Gao '01) $\mathcal{R}_{\approx}(K)$ is Borel bi-reducible to the equivalence relation generated by isomorphisms of countable graphs.
- This equivalence relation is a maximal S_{∞}-action.

Cantor systems

- Let K be a Cantor space. A TDS (K, T) is called a Cantor system.
- Theorem (Camerlo-Gao '01) $\mathcal{R} \approx(K)$ is Borel bi-reducible to the equivalence relation generated by isomorphisms of countable graphs.
- This equivalence relation is a maximal S_{∞}-action.
- In particular this implies that $\mathcal{R}_{\approx}(K)$ is a complete analytic set.

Borel reductions

- When dealing with equivalence relations there are two ways to define Borel reductions.

Borel reductions

- When dealing with equivalence relations there are two ways to define Borel reductions.
- Let $R \subset P \times P$ and $R^{\prime} \subset P^{\prime} \times P^{\prime}$ be equivalence relations on Polish spaces.

Borel reductions

- When dealing with equivalence relations there are two ways to define Borel reductions.
- Let $R \subset P \times P$ and $R^{\prime} \subset P^{\prime} \times P^{\prime}$ be equivalence relations on Polish spaces.
- We say R is (Borel) reducible to $R^{\prime}\left(R \preceq_{B}^{2} R^{\prime}\right)$ if there exists a Borel function $f: P \rightarrow P^{\prime}$ such that $(x, y) \in R$ if and only if $(f(x), f(y)) \in R^{\prime}$.

Borel reductions

- When dealing with equivalence relations there are two ways to define Borel reductions.
- Let $R \subset P \times P$ and $R^{\prime} \subset P^{\prime} \times P^{\prime}$ be equivalence relations on Polish spaces.
- We say R is (Borel) reducible to $R^{\prime}\left(R \preceq_{B}^{2} R^{\prime}\right)$ if there exists a Borel function $f: P \rightarrow P^{\prime}$ such that $(x, y) \in R$ if and only if $(f(x), f(y)) \in R^{\prime}$.
- We say R is reducible to R^{\prime} as a set $\left(R \preceq_{B} R^{\prime}\right)$ if there exists a Borel function $f: P \times P \rightarrow P^{\prime} \times P^{\prime}$ such that $(x, y) \in R$ if and only if $f(x, y) \in R^{\prime}$.

Minimal

- Question Does the complexity of $\mathcal{R}_{\approx}(K)$ change if we restrict to minimal systems?

Minimal

- Question Does the complexity of $\mathcal{R}_{\approx}(K)$ change if we restrict to minimal systems?
- Question (Gao) Is $\mathcal{R}_{\approx}^{\min }(K)$ a Borel subset ?

Minimal

- Question Does the complexity of $\mathcal{R}_{\approx}(K)$ change if we restrict to minimal systems?
- Question (Gao) Is $\mathcal{R}_{\approx}^{\min }(K)$ a Borel subset ?
- A TDS is minimal if for every closed subset $A \subset X$ such that $T(A) \subset A$ we have that $A=\varnothing$ or $A=X$.

Minimal

- Question Does the complexity of $\mathcal{R}_{\approx}(K)$ change if we restrict to minimal systems?
- Question (Gao) Is $\mathcal{R}_{\approx}^{\min }(K)$ a Borel subset ?
- A TDS is minimal if for every closed subset $A \subset X$ such that $T(A) \subset A$ we have that $A=\varnothing$ or $A=X$.
- Why minimal systems?

Minimal

- Cantor minimal systems have more structure than general Cantor systems.

Minimal

- Cantor minimal systems have more structure than general Cantor systems.
- For example Cantor minimal systems can be represented by transformations on Bratteli diagrams.

- The complexity of pointed Cantor minimal systems is well understood.
- The complexity of pointed Cantor minimal systems is well understood.
- We say (X, T, x) is a pointed TDS if (X, T) is a TDS and $x \in X$.
- The complexity of pointed Cantor minimal systems is well understood.
- We say (X, T, x) is a pointed TDS if (X, T) is a TDS and $x \in X$.
- $\left(X_{1}, T_{1}, x_{1}\right)$ and $\left(X_{2}, T_{2}, x_{2}\right)$ are conjugated if there exists a homeomorphism $f: X_{1} \rightarrow X_{2}$ such that $f \circ T_{1}=T_{2} \circ f$ and $f\left(x_{1}\right)=x_{2}$.
- The complexity of pointed Cantor minimal systems is well understood.
- We say (X, T, x) is a pointed TDS if (X, T) is a TDS and $x \in X$.
- $\left(X_{1}, T_{1}, x_{1}\right)$ and $\left(X_{2}, T_{2}, x_{2}\right)$ are conjugated if there exists a homeomorphism $f: X_{1} \rightarrow X_{2}$ such that $f \circ T_{1}=T_{2} \circ f$ and $f\left(x_{1}\right)=x_{2}$.
- Theorem (Kaya '15) The equivalence relation generated by conjugacy of pointed Cantor minimal systems is bi-reducible to $={ }^{+}$.

Furthermore $={ }^{+}$is reducible to $\mathcal{R}_{\approx}^{\min }(K)$.

- The complexity of pointed Cantor minimal systems is well understood.
- We say (X, T, x) is a pointed TDS if (X, T) is a TDS and $x \in X$.
- $\left(X_{1}, T_{1}, x_{1}\right)$ and $\left(X_{2}, T_{2}, x_{2}\right)$ are conjugated if there exists a homeomorphism $f: X_{1} \rightarrow X_{2}$ such that $f \circ T_{1}=T_{2} \circ f$ and $f\left(x_{1}\right)=x_{2}$.
- Theorem (Kaya '15) The equivalence relation generated by conjugacy of pointed Cantor minimal systems is bi-reducible to $={ }^{+}$.

Furthermore $={ }^{+}$is reducible to $\mathcal{R}_{\approx}^{\min }(K)$.

- For $\left\{x_{n}\right\},\left\{y_{n}\right\} \in \mathbb{R}^{\mathbb{N}}$, we write $\left\{x_{n}\right\}=^{+}\left\{y_{n}\right\}$ if $\left\{x_{n}: n \in \mathbb{N}\right\}=\left\{x_{n}: n \in \mathbb{N}\right\}$.

Equicontinuous systems

- Equicontinuous minimal systems can be classified.

Equicontinuous systems

- Equicontinuous minimal systems can be classified.
- A TDS is equicontinuous if for every $\varepsilon>0$ there exist $\delta>0$ such that if $d(x, y) \leq \delta$ then $d\left(T^{n} x, T^{n} y\right) \leq \varepsilon$.

Equicontinuous systems

- Equicontinuous minimal systems can be classified.
- A TDS is equicontinuous if for every $\varepsilon>0$ there exist $\delta>0$ such that if $d(x, y) \leq \delta$ then $d\left(T^{n} x, T^{n} y\right) \leq \varepsilon$.
- Let $C(X)=\{f: X \rightarrow \mathbb{C}: f$ is continuous $\}$.

Equicontinuous systems

- Equicontinuous minimal systems can be classified.
- A TDS is equicontinuous if for every $\varepsilon>0$ there exist $\delta>0$ such that if $d(x, y) \leq \delta$ then $d\left(T^{n} x, T^{n} y\right) \leq \varepsilon$.
- Let $C(X)=\{f: X \rightarrow \mathbb{C}: f$ is continuous $\}$.
- Given a TDS we define the topological Koopman operator $U_{T}: C(X) \rightarrow C(X)$ as $U_{T}(f)=f \circ T$.

Equicontinuous systems

- Equicontinuous minimal systems can be classified.
- A TDS is equicontinuous if for every $\varepsilon>0$ there exist $\delta>0$ such that if $d(x, y) \leq \delta$ then $d\left(T^{n} x, T^{n} y\right) \leq \varepsilon$.
- Let $C(X)=\{f: X \rightarrow \mathbb{C}: f$ is continuous $\}$.
- Given a TDS we define the topological Koopman operator $U_{T}: C(X) \rightarrow C(X)$ as $U_{T}(f)=f \circ T$.
- Theorem (Halmos - von Neumann) Two minimal equicontinuous systems are conjugated if and only if the eigenvalues of topological Koopman operator are the same.

Discrete spectrum

- Theorem (Foreman - Louveau '00) Isomorphism of discrete spectrum ergodic transformations is bi-reducible to $={ }^{+}$.

Discrete spectrum

- Theorem (Foreman - Louveau '00) Isomorphism of discrete spectrum ergodic transformations is bi-reducible to $={ }^{+}$.
- This result uses the measurable version of the Halmos - von Neumann the eigenvalues of the operator on $L^{2}(X, \mu)$.

Cantor minimal systems

- Let $\mathcal{R}_{\approx}^{\min }(X)=\left\{\left(T_{1}, T_{2}\right):\left(X, T_{1}\right) \approx\left(X, T_{2}\right)\right.$ and $\left(X, T_{1}\right)$ is minimal $\}$.

Cantor minimal systems

- Let $\mathcal{R}_{\approx}^{\min }(X)=\left\{\left(T_{1}, T_{2}\right):\left(X, T_{1}\right) \approx\left(X, T_{2}\right)\right.$ and $\left(X, T_{1}\right)$ is minimal $\}$.
- Going back to the question about conjugacy on minimal systems.

Cantor minimal systems

- Let $\mathcal{R}_{\approx}^{\min }(X)=\left\{\left(T_{1}, T_{2}\right):\left(X, T_{1}\right) \approx\left(X, T_{2}\right)\right.$ and $\left(X, T_{1}\right)$ is minimal $\}$.
- Going back to the question about conjugacy on minimal systems.
- Theorem (Deka et al) $\mathcal{R} \underset{\approx}{\min }(K)$ is a complete analytic subset (and hence not Borel).

Cantor minimal systems

- Let $\mathcal{R}_{\approx}^{\min }(X)=\left\{\left(T_{1}, T_{2}\right):\left(X, T_{1}\right) \approx\left(X, T_{2}\right)\right.$ and $\left(X, T_{1}\right)$ is minimal $\}$.
- Going back to the question about conjugacy on minimal systems.
- Theorem (Deka et al) $\mathcal{R} \underset{\approx}{\min }(K)$ is a complete analytic subset (and hence not Borel).
- Corollary $\mathcal{R}{\underset{\sim}{m i n}}(K)$ is bi-reducible to $\mathcal{R} \approx(K)$ as a set.

Cantor minimal systems

- Let $\mathcal{R}_{\approx}^{\min }(X)=\left\{\left(T_{1}, T_{2}\right):\left(X, T_{1}\right) \approx\left(X, T_{2}\right)\right.$ and $\left(X, T_{1}\right)$ is minimal $\}$.
- Going back to the question about conjugacy on minimal systems.
- Theorem (Deka et al) $\mathcal{R} \underset{\approx}{\min }(K)$ is a complete analytic subset (and hence not Borel).
- Corollary $\mathcal{R}{ }_{\approx}^{\min }(K)$ is bi-reducible to $\mathcal{R} \approx(K)$ as a set.
- We still do not know if $\mathcal{R}_{\approx}^{\min }(K)$ is a maximal S_{∞}-action.

Cantor minimal systems

- Let $\mathcal{R}_{\approx}^{\min }(X)=\left\{\left(T_{1}, T_{2}\right):\left(X, T_{1}\right) \approx\left(X, T_{2}\right)\right.$ and $\left(X, T_{1}\right)$ is minimal $\}$.
- Going back to the question about conjugacy on minimal systems.
- Theorem (Deka et al) $\mathcal{R} \underset{\approx}{\min }(K)$ is a complete analytic subset (and hence not Borel).
- Corollary $\mathcal{R}{ }_{\approx}^{\min }(K)$ is bi-reducible to $\mathcal{R} \approx(K)$ as a set.
- We still do not know if $\mathcal{R} \underset{\approx}{\min }(K)$ is a maximal S_{∞}-action.
- Another candidate is the isomorphism of countable abelian torsion groups, which is complete analytic and determined by an S_{∞}-action, but it is not maximal.

Cantor minimal systems

- Let $\mathcal{R}_{\approx}^{\min }(X)=\left\{\left(T_{1}, T_{2}\right):\left(X, T_{1}\right) \approx\left(X, T_{2}\right)\right.$ and $\left(X, T_{1}\right)$ is minimal $\}$.
- Going back to the question about conjugacy on minimal systems.
- Theorem (Deka et al) $\mathcal{R} \underset{\approx}{\min }(K)$ is a complete analytic subset (and hence not Borel).
- Corollary $\mathcal{R}_{\approx}^{\min }(K)$ is bi-reducible to $\mathcal{R} \approx(K)$ as a set.
- We still do not know if $\mathcal{R} \underset{\approx}{\min }(K)$ is a maximal S_{∞}-action.
- Another candidate is the isomorphism of countable abelian torsion groups, which is complete analytic and determined by an S_{∞}-action, but it is not maximal.
- Before mentioning some tools...

Isomorphism of measure-preserving transformations

- Theorem (Hjorth '01) The isomorphism equivalence relation for measure preserving transformations is strictly more complicated than isomorphism for countable graphs.

Isomorphism of measure-preserving transformations

- Theorem (Hjorth '01) The isomorphism equivalence relation for measure preserving transformations is strictly more complicated than isomorphism for countable graphs.
- In particular this implies that isomorphism for MPT is more complicated than conjugacy for Cantor systems.

Isomorphism of measure-preserving transformations

- Theorem (Hjorth '01) The isomorphism equivalence relation for measure preserving transformations is strictly more complicated than isomorphism for countable graphs.
- In particular this implies that isomorphism for MPT is more complicated than conjugacy for Cantor systems.
- We say an invariant measure is ergodic if every invariant Borel subset has null or complete measure.

Isomorphism of measure-preserving transformations

- Theorem (Hjorth '01) The isomorphism equivalence relation for measure preserving transformations is strictly more complicated than isomorphism for countable graphs.
- In particular this implies that isomorphism for MPT is more complicated than conjugacy for Cantor systems.
- We say an invariant measure is ergodic if every invariant Borel subset has null or complete measure.
- Hjorth's proof uses nonergodic transformations in an essential way.

Isomorphism of measure-preserving transformations

- Theorem (Hjorth '01) The isomorphism equivalence relation for measure preserving transformations is strictly more complicated than isomorphism for countable graphs.
- In particular this implies that isomorphism for MPT is more complicated than conjugacy for Cantor systems.
- We say an invariant measure is ergodic if every invariant Borel subset has null or complete measure.
- Hjorth's proof uses nonergodic transformations in an essential way.
- Theorem (Foreman, Rudolph, Weiss '11) The isomorphism equivalence relation for ergodic measure preserving transformations is complete analytic.

Trees

- One of the tools for the proof of FRW is constructing a Borel function

$$
f: \text { Trees } \rightarrow \text { \{minimal uniquely ergodic subshifts }\}
$$

so that

Trees

- One of the tools for the proof of FRW is constructing a Borel function $f:$ Trees \rightarrow \{minimal uniquely ergodic subshifts $\}$
so that
- $t \in$ Trees is ill founded if and only if the unique invariant measure of $f(t)$ is

Trees

- One of the tools for the proof of FRW is constructing a Borel function $f:$ Trees \rightarrow \{minimal uniquely ergodic subshifts $\}$
so that
- $t \in$ Trees is ill founded if and only if the unique invariant measure of $f(t)$ is
- isomorphic to the unique invariant measure of the subshift which is the reverse of $f(t)$ (using σ^{-1}).

Trees

- One of the tools for the proof of FRW is constructing a Borel function $f:$ Trees \rightarrow \{minimal uniquely ergodic subshifts $\}$
so that
- $t \in$ Trees is ill founded if and only if the unique invariant measure of $f(t)$ is
- isomorphic to the unique invariant measure of the subshift which is the reverse of $f(t)$ (using σ^{-1}).
- One uses the fact that the collection of ill-founded trees is a complete analytic set.
- The FRW approach has flexibility; it has been used in different set ups like Kakutani equivalence and K-systems (Gerber-Kunde).
- The FRW approach has flexibility; it has been used in different set ups like Kakutani equivalence and K-systems (Gerber-Kunde).
- Nonetheless, the technique has not been used for topological dynamics.
- The FRW approach has flexibility; it has been used in different set ups like Kakutani equivalence and K-systems (Gerber-Kunde).
- Nonetheless, the technique has not been used for topological dynamics.
- Take an ill founded tree t. In general $f(t)$ is not (top.) conjugated the inverse of $f(t)$.
- The FRW approach has flexibility; it has been used in different set ups like Kakutani equivalence and K-systems (Gerber-Kunde).
- Nonetheless, the technique has not been used for topological dynamics.
- Take an ill founded tree t. In general $f(t)$ is not (top.) conjugated the inverse of $f(t)$.
- If one was able to "fix" this then we would conclude that the conjugacy relation for subshifts is not Borel.
- The FRW approach has flexibility; it has been used in different set ups like Kakutani equivalence and K-systems (Gerber-Kunde).
- Nonetheless, the technique has not been used for topological dynamics.
- Take an ill founded tree t. In general $f(t)$ is not (top.) conjugated the inverse of $f(t)$.
- If one was able to "fix" this then we would conclude that the conjugacy relation for subshifts is not Borel.
- Actually the conjugacy between any subshifts is given by (finite-window) sliding-blockcodes, so the relation of conjugacy of subshifts is countable and hence Borel. Hence, this approach is impossible

Cantor subshifts

- We add a new dimension to the construction.

Cantor subshifts

- We add a new dimension to the construction.
- Let $\mathcal{K}^{\sigma}(K)=\left\{X \subset K^{\mathbb{Z}}: X\right.$ is closed and shift invariant $\}$ the space of Cantor subshifts.

Cantor subshifts

- We add a new dimension to the construction.
- Let $\mathcal{K}^{\sigma}(K)=\left\{X \subset K^{\mathbb{Z}}: X\right.$ is closed and shift invariant $\}$ the space of Cantor subshifts.
- We equipp this space with the Vietoris topology (Hausdorff metric).

Cantor subshifts

- We add a new dimension to the construction.
- Let $\mathcal{K}^{\sigma}(K)=\left\{X \subset K^{\mathbb{Z}}: X\right.$ is closed and shift invariant $\}$ the space of Cantor subshifts.
- We equipp this space with the Vietoris topology (Hausdorff metric).
- We construct a Borel function

$$
f: \text { Trees } \rightarrow\{\text { minimal Cantor subshifts }\}
$$

Cantor subshifts

- We add a new dimension to the construction.
- Let $\mathcal{K}^{\sigma}(K)=\left\{X \subset K^{\mathbb{Z}}: X\right.$ is closed and shift invariant $\}$ the space of Cantor subshifts.
- We equipp this space with the Vietoris topology (Hausdorff metric).
- We construct a Borel function

$$
f: \text { Trees } \rightarrow\{\text { minimal Cantor subshifts }\}
$$

- such that $t \in$ Trees is ill founded if and only if $(f(t), \sigma)$ is conjugated to $\left(f(t), \sigma^{-1}\right)$.

Cantor subshifts

- We add a new dimension to the construction.
- Let $\mathcal{K}^{\sigma}(K)=\left\{X \subset K^{\mathbb{Z}}: X\right.$ is closed and shift invariant $\}$ the space of Cantor subshifts.
- We equipp this space with the Vietoris topology (Hausdorff metric).
- We construct a Borel function

$$
f: \text { Trees } \rightarrow\{\text { minimal Cantor subshifts }\}
$$

- such that $t \in$ Trees is ill founded if and only if $(f(t), \sigma)$ is conjugated to $\left(f(t), \sigma^{-1}\right)$.
- We construct the Cantor subshifts step by step by enumerating the tree.

Cantor subshifts

- We add a new dimension to the construction.
- Let $\mathcal{K}^{\sigma}(K)=\left\{X \subset K^{\mathbb{Z}}: X\right.$ is closed and shift invariant $\}$ the space of Cantor subshifts.
- We equipp this space with the Vietoris topology (Hausdorff metric).
- We construct a Borel function

$$
f: \text { Trees } \rightarrow\{\text { minimal Cantor subshifts }\}
$$

- such that $t \in$ Trees is ill founded if and only if $(f(t), \sigma)$ is conjugated to $\left(f(t), \sigma^{-1}\right)$.
- We construct the Cantor subshifts step by step by enumerating the tree.
- At each step n we set the language of length $I(n)$ of the first m levels of the Cantor subshift (where m is the depth of the vertex n).
- Finally we prove that the conjugacy relation of (perfect) Cantor minimal subshifts is bi-reducible to the conjugacy relation of Cantor minimal systems.
- Finally we prove that the conjugacy relation of (perfect) Cantor minimal subshifts is bi-reducible to the conjugacy relation of Cantor minimal systems.
- Every Cantor system is conjugated to a Cantor subshift.
- Finally we prove that the conjugacy relation of (perfect) Cantor minimal subshifts is bi-reducible to the conjugacy relation of Cantor minimal systems.
- Every Cantor system is conjugated to a Cantor subshift.
- Not every Cantor subshift is a Cantor system, but every Cantor subshift without isolated points is a Cantor system.

Flip conjugacy

- Question (Gao) Is the relation given by flip-conjugacy of Cantor minimal systems Borel?

Flip conjugacy

- Question (Gao) Is the relation given by flip-conjugacy of Cantor minimal systems Borel?
- We say (X, T) and $\left(X_{2}, T_{2}\right)$ are flip-conjugated if $(X, T) \approx\left(X_{2}, T_{2}\right)$ or $(X, T) \approx\left(X_{2}, T_{2}^{-1}\right)$.

Flip conjugacy

- Question (Gao) Is the relation given by flip-conjugacy of Cantor minimal systems Borel?
- We say (X, T) and $\left(X_{2}, T_{2}\right)$ are flip-conjugated if $(X, T) \approx\left(X_{2}, T_{2}\right)$ or $(X, T) \approx\left(X_{2}, T_{2}^{-1}\right)$.
- With our previous approach we cannot obtain the result for flip conjugacy because a system is always flip-conjugated to its inverse.
- What is needed is a Borel reduction
- What is needed is a Borel reduction

$$
f: \text { Trees } \rightarrow\{\text { minimal Cantor subshifts }\}^{2}
$$

with $f(t)=\left(f_{1}(t), f_{2}(t)\right)$

- What is needed is a Borel reduction
$f:$ Trees $\rightarrow\{\text { minimal Cantor subshifts }\}^{2}$
with $f(t)=\left(f_{1}(t), f_{2}(t)\right)$
- where:
- What is needed is a Borel reduction

$$
f: \text { Trees } \rightarrow\{\text { minimal Cantor subshifts }\}^{2}
$$

with $f(t)=\left(f_{1}(t), f_{2}(t)\right)$

- where:
- $\left(f_{1}(t), \sigma\right)$ is never conjugated to $\left(f_{2}(t), \sigma^{-1}\right)$, and
- What is needed is a Borel reduction

$$
f: \text { Trees } \rightarrow\{\text { minimal Cantor subshifts }\}^{2}
$$

with $f(t)=\left(f_{1}(t), f_{2}(t)\right)$

- where:
- $\left(f_{1}(t), \sigma\right)$ is never conjugated to $\left(f_{2}(t), \sigma^{-1}\right)$, and
- $t \in$ Trees is ill founded if and only if $\left(f_{2}(t), \sigma\right)$ is conjugated to $\left(f_{2}(t), \sigma\right)$.
- What is needed is a Borel reduction

$$
f: \text { Trees } \rightarrow\{\text { minimal Cantor subshifts }\}^{2}
$$

with $f(t)=\left(f_{1}(t), f_{2}(t)\right)$

- where:
- $\left(f_{1}(t), \sigma\right)$ is never conjugated to $\left(f_{2}(t), \sigma^{-1}\right)$, and
- $t \in$ Trees is ill founded if and only if $\left(f_{2}(t), \sigma\right)$ is conjugated to $\left(f_{2}(t), \sigma\right)$.
- Theorem (Deka et al) The flip conjugacy relation for Cantor minimal systems is complete analytic.

Groups

- A group G is simple if the only normal subgroups are $\{i d\}$ and G.

Groups

- A group G is simple if the only normal subgroups are $\{i d\}$ and G.
- Finite simple groups can be classified:

Groups

- A group G is simple if the only normal subgroups are $\{i d\}$ and G.
- Finite simple groups can be classified:

Theorem - Every finite simple group is isomorphic to one of the following groups:

- a member of one of three infinite classes of such, namely:
- the cyclic groups of prime order,
- the alternating groups of degree at least 5 ,
- the groups of Lie type ${ }^{[n o t e ~ 1] ~}$
- one of 26 groups called the "sporadic groups"
- the Tits group (which is sometimes considered a 27th sporadic group). [note 1]

Groups

- A group G is simple if the only normal subgroups are $\{i d\}$ and G.
- Finite simple groups can be classified:

```
Theorem - Every finite simple group is isomorphic to one of the following groups:
```

- a member of one of three infinite classes of such, namely:
- the cyclic groups of prime order,
- the alternating groups of degree at least 5 ,
- the groups of Lie type ${ }^{[\text {note } 1]}$
- one of 26 groups called the "sporadic groups"
- the Tits group (which is sometimes considered a 27th sporadic group). [note 1]
- Theorem (Robert '23) The relation obtained from isomorphisms of locally finite simple groups arises from a maximal S_{∞}-action.

Groups

- We define the topological full group of a TDS $(X, T),[[T]]$ as the subgroup of points $g \in \operatorname{Homeo}(X)$ for which there exists a continuous function $f_{g}: X \rightarrow \mathbb{Z}$ such that $g(x)=T^{f_{g}(x)}(x)$.

Groups

- We define the topological full group of a $\operatorname{TDS}(X, T),[[T]]$ as the subgroup of points $g \in \operatorname{Homeo}(X)$ for which there exists a continuous function $f_{g}: X \rightarrow \mathbb{Z}$ such that $g(x)=T^{f_{g}(x)}(x)$.
- Let (K, T) be a Cantor minimal system.

Groups

- We define the topological full group of a $\operatorname{TDS}(X, T),[[T]]$ as the subgroup of points $g \in \operatorname{Homeo}(X)$ for which there exists a continuous function $f_{g}: X \rightarrow \mathbb{Z}$ such that $g(x)=T^{f_{g}(x)}(x)$.
- Let (K, T) be a Cantor minimal system.
- [[T]] is countable.

Groups

- We define the topological full group of a TDS $(X, T),[[T]]$ as the subgroup of points $g \in \operatorname{Homeo}(X)$ for which there exists a continuous function $f_{g}: X \rightarrow \mathbb{Z}$ such that $g(x)=T^{f_{g}(x)}(x)$.
- Let (K, T) be a Cantor minimal system.
- [$[T]]$ is countable.
- [[T]] amenable (Juschenko-Monod '12).

Groups

- We define the topological full group of a TDS $(X, T),[[T]]$ as the subgroup of points $g \in \operatorname{Homeo}(X)$ for which there exists a continuous function $f_{g}: X \rightarrow \mathbb{Z}$ such that $g(x)=T^{f_{g}(x)}(x)$.
- Let (K, T) be a Cantor minimal system.
- [[T]] is countable.
- [[T]] amenable (Juschenko-Monod '12).
- $[[T]]^{\prime}$, the commutator of $[[T]]$ is simple (Matui '06, Bezuglyi-Medynets '07)

Classification

- Let (K, T) and $\left(K, T_{2}\right)$ be Cantor minimal systems.

Classification

- Let (K, T) and $\left(K, T_{2}\right)$ be Cantor minimal systems.
- Theorem (Giordano-Putnam-Skau '99) $\left(K, T_{1}\right) \approx_{f l i p}\left(K, T_{2}\right)$ if and only if $\left[\left[T_{1}\right]\right]$ is isomorphic to $\left[\left[T_{2}\right]\right]$

Classification

- Let (K, T) and $\left(K, T_{2}\right)$ be Cantor minimal systems.
- Theorem (Giordano-Putnam-Skau '99) $\left(K, T_{1}\right) \approx_{f l i p}\left(K, T_{2}\right)$ if and only if [[$\left.T_{1}\right]$] is isomorphic to [[$\left.T_{2}\right]$]
- Theorem (Bezuglyi-Medynets '07) $\left(K, T_{1}\right) \approx_{f l i p}\left(K, T_{2}\right)$ if and only if $\left[\left[T_{1}\right]\right]^{\prime}$ is isomorphic to $\left[\left[T_{2}\right]\right]^{\prime}$.

Proposition

- By construction a Borel reduction to the commutator of the full group we obtain the following result.

Proposition

- By construction a Borel reduction to the commutator of the full group we obtain the following result.
- Proposition (Deka et al) The relation obtain by flip-cojugacy of Cantor minimal systems reduces to the relation of isomorphism of countable simple amenable groups.

- Dzieki!

